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Abstract—Static program analysis by abstract 
interpretation is an efficient method to determine 
properties of embedded software. One example is value 
analysis, which determines the values stored in the 
processor registers. Therefore, utmost carefulness and 
state-of-the-art machinery have to be applied to make 
sure that an application meets all requirements. To do 
so lays in the responsibility of the system designer(s). As 
more software and embedded code saw use in safety-
critical and avionics applications, an industry standard 
group developed the RTCA/DO-178B: Software 
Considerations in Airborne Systems and Equipment 
Certification.  
Index Terms— Branch Prediction, Worst Case 
Execution Time, Stack, WCET 

 
1 INTRODUCTION 

Software which is embedded in aircraft to which 
people entrust their lives becomes safety critical and 
consequently must be of the highest standards. 
Failures of such software must be as rare as virtually 
non-existing during the lifetime of all aircraft 
concerned. Due to the high costs of aircraft, 
hypothetical software failures would also incur major 
financial losses, a further drive to require the highest 
quality. It is clear that in aircraft, safety is not 
compromise requirement one. The Army Strategic 
Software Improvement Program (ASSIP1) has tasked 
the Carnegie Mellon® Software Engineering Institute 
(SEI) to conduct a study of real-time, safety-critical, 
embedded (RTSCE) systems issues and develops 
recommendations for effectively dealing with those 
issues. This report contains the results of the first 
phase, an investigation into the current body of 
knowledge related to RTSCE system and software 
development, to include practices employed and 
emerging in the relevant United States and European 
commercial and government sectors. In a second 
phase, issues and shortfalls with the current state of 
RTSCE software acquisition and development 
practices will be identified. Recommendations for 
correcting those problems in the weapon systems 
domain will be made with emphasis on up-front tasks 
and considerations that will allow acquirers to 
position their acquisition programs properly from the 
start.   

2 VALUE ANALYSES 
We additionally have to encrypt data values stored in 
off-chip memory. The encryption and decryption of 
data values can be done by hardware. However 
several interesting decidable scenarios have been 
identified. In this section, we will see that it follows 
quite directly from Theorem 1 that the consistency 
and the implication problem for unary keys and unary 
inclusion constraints are decidable, even relative to 
structural constraints given by a regular tree language 
(a similar result was first shown in [1]. Other 
scenarios and approaches will be discussed in the 
next section. Because of the presence of loops, 
transfer and combination functions must be applied 
repeatedly until the system of abstract states 
stabilizes. Termination of this fixed point iteration is 
ensured on a theoretical level by the mono tonicity of 
transfer and combination functions and the fact that a 
memory location can only hold finitely many 
different values. Value analysis is a static analysis 
method based on abstract interpretation. It produces 
results valid for every program run and all inputs to 
the program. Therefore, it cannot always predict an 
exact value for a memory location, but determines 
abstract values instead that stand for sets of concrete 
values. There are several variants of value analysis 
depending on what kinds of abstract values are used. 
In constant propagation, an abstract value is either a 
single concrete value or the statement that no 
information about the value is known. In interval 
analysis, abstract values are intervals that are 
guaranteed to contain the exact values. Further 
extensions of value analysis record known equalities 
between otherwise unknown values, or more 
generally, upper and lower bounds for their 
differences, or even more generally, arbitrary linear 
constraints between values. As compiler writers are 
well aware, constants provide excellent optimization 
capability, through the well-known compiler 
optimization known as constant propagation and 
constant folding [1][10]. Such propagation consists 
of replacing a variable holding a constant by the 
constant itself. This replacement can result, for 
example, in branch conditions that always evaluate to 
false, resulting in turn in dead code that can then be 
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eliminated. It can also enable compile-time 
evaluation of expressions. Such dead code resulting 
from constant propagation is especially common 
when propagating constants into subroutines through 
the subroutine’s parameters. While the subroutine 
may have been designed to handle a variety of sets of 
parameters, a particular program may only call the 
subroutine with certain constant values for those 
parameters, resulting in much dead code in the 
subroutine. 

 
3 STACK USAGE ANALYSES 

A stack overflow in an embedded DSP application 
generally produces a catastrophic software crash due 
to data corruption, lost return addresses, or both. The 
traditional approach to avoiding stack overflow is to 
perform offline testing during software development. 
Typically, a stack will be comfortably oversized, and 
the entire stack memory filled with some known data 
value using a code debugger. To implement this 
strategy, the stack buffer is set up as a circular buffer 
with a head and tail pointer. A pointer to memory is 
also needed to keep track of the top element of the 
memory-resident portion of the stack. Whenever a 
stack overflow is encountered, the bottom-most 
buffer-resident element is copied to memory, freeing 
a buffer location. Whenever an underflow is 
encountered, one element from memory is copied 
into the buffer. This technique has the appeal that the 
processor never moves a stack element to or from 
memory unless absolutely necessary, guaranteeing 
the minimum amount of stack traffic.  
A possible embellishment of this scheme would be to 
have the stack manager always keep a few elements 
empty and at least several elements full on the stack. 
This management could be done using otherwise 
unused memory cycles, and would reduce the number 
of overflow and underflow pauses. Unfortunately, 
this embellishment is of little value on real stack 
machines, since they all strive to use program 
memory 100% of the time for fetching instructions 
and data, leaving no memory bandwidth left over for 
the stack manager to use.  
Another drawback of the testing-based approach to 
determining stack depth is that it treats the system as 
a black box, providing developers with little or no 
feedback about how to best optimize memory usage. 
Static stack analysis, on the other hand, identifies the 
critical path through the system and also the 
maximum stack consumption of each function; this 
usually exposes obvious candidates for optimization. 
Using our method for statically bounding stack depth 
as a starting point, we have developed a novel way to 
automatically reduce the stack memory requirement 
of an embedded system. The optimization proceeds 
by evaluating the effect of a large number of potential 
program transformations in a feedback loop, applying 
only transformations that reduce the worst-case depth 

of the stack. Static analysis makes this kind of 
optimization feasible by rapidly providing accurate 
information about a program. Testing based 
approaches to learning about system behaviour, on 
the other hand, are slower and typically only explore 
a fraction of the possible state space. Static Analysis 
based approaches consist in using tools to analyze the 
application stack space consumption patterns and 
possibly compute worst case bounds prior to 
execution time. They usually perform some local 
stack consumption analysis combined with control-
flow graph traversals. The bound computation is 
actually a small subset of a wide category of resource 
bounding analysis problems, focus of a lot of 
research activity over the years. See for an example 
set of publications in this area, or for a specific 
instance. One limitation is that a compiler cannot 
provide information on elements it doesn’t process, 
such as COTS operating system services for which 
sources are not available or very low level routines 
developed in assembly language. When worst case 
bounds are a strong concern, not having the sources 
of some components is rare, however, and the stack 
usage in assembly routines is usually simple enough 
to be accounted for manually. 
The compilation process may also not be able to 
grasp the interrupt handling bits necessary to size the 
worst case amount of interrupt related stack, be it for 
hardware interrupt or signal handlers. Interrupt 
handling always requires very careful design [2,3] 
and coding, though, so the information could at least 
also be provided to the framework by the user, or 
accounted for separately. When faced with an 
instruction I that is an indirect memory reference off 
one or more registers, we attempt to discover whether 
or not the register(s) used by I could be pointing into 
the stack.  
We do this by tracing back from I in an attempt to 
determine the origin of the initial value of the 
registers in question. If we can determine that the 
base address being used for the pointer arithmetic is 
in global memory or the heap, then, from the 
reasoning above, we can conclude that the indirect 
memory reference cannot affect the stack.  

 
Fig1. Call graph with stack usage analysis results. All 

routines are annotated by their worst-case stack 
usage. 
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Fig2. In the control flow graph, all basic blocks and 
instructions are annotated by their worst-case stack 

usage 
 
Stack Analyzer provides automatic tool support to 
calculate precise information on the stack usage. This 
not only reduces development effort, but also helps to 
prevent runtime errors due to stack overflow. Critical 
program sections are easily recognized thanks to 
color coding. The analysis results thus provide 
valuable feedback in optimizing the stack usage of an 
application. The predicted worst-case stack usages of 
individual tasks in a system can be used in an 
automated overall stack usage analysis for all tasks 
running on one Electronic Control Unit, as described 
in [7] for systems managed by an OSEK/VDX real-
time operating system. 
 

4 WCET ANALYSES: WORST-CASE EXECUTION 

TIME PREDICTION. 
Abstract interpretation can be used to efficiently 
compute a safe approximation for all possible cache 
and pipeline states that can occur at a program point. 
These results can be combined with ILP (Integer 
Linear Programming) techniques to safely predict the 
worst-case execution time and a corresponding 
worst-case execution path. This approach can help to 
overcome the challenges listed in the previous 
sections. Abs Int’s WCET tool aiT determines the 
WCET of a program task in several phases [4] (see 
Figure 1): •CFG Building decodes, i.e. identifies 
instructions, and reconstructs the control-flow graph 
(CFG) from a binary program. 
•Value Analysis computes value ranges for registers 
and address ranges for instructions accessing 
memory. 
•Loop Bound Analysis determines upper bounds for 
the number of iterations of simple loops. 
•Cache Analysis classifies memory references as 
cache misses or hits. 
•Pipeline Analysis predicts the behaviour of the 
program on the processor pipeline. 
 

 
Hard real-time systems need methods to determine 
upper bounds for their execution times, usually called 
worst-case execution times, (WCET). Based on these 
bounds, a schedulability analysis can check whether 
the underlying hardware is fast enough to execute the 
system’s task such that they all finish before their 
deadlines. This problem is nontrivial because 
performance-enhancing architectural features such as 
caches, pipelines, and branch prediction introduce 
“local non-determinism” into the processor 
behaviour; local inspection of the program cannot 
determine what the contribution of an instruction to 
the program’s overall execution time is. The 
execution history determines whether the 
instruction’s memory accesses hit or miss the cache, 
whether the pipeline units needed by the instruction 
are occupied or not, and whether branch prediction is 
correct or not.  

4.1 Structure of WCET Computation 
We first present some more details about the structure 
of the program. It consists of 24 uninterruptible tasks 
that are activated one-by-one by a real time clock in a 
fixed schedule: task 1 to task 24, then task 1 again, 
and so on until the electrical power of the aircraft is 
switched off. This time-triggered scheduling method 
requires that the WCET of each task must be less 
than the period of the real-time clock. The call graph 
of each task is basically organized in three layers. 
The first layer contains 4 calls to so-called 
sequencers, which for each task are selected from a 
list of 38 possibilities. These sequencers allow for the 
activation of pieces of code at different rates, i.e., 1 
over 2 ticks, 4 ticks, 8 ticks or 24 ticks. Still in this 
highest layer, some system routines are called before 
and after the four sequencer calls. The second layer 
consists of the routines containing the actual 
operation code composed of “calls” to code macros, 
which form the basic components referred to in 
section 3. The third layer consists of the input/output 
routines called by some of the basic components 
present in the second layer. The major part of the 
factors affecting the WCET (conditions, loop bounds, 
pointers, etc) is found automatically by aiT, either by 
code inspection or from the annotations describing 
the configuration table. Yet some factors are outside 
aiT’s knowledge and capacities [4,5,6], and 
annotations have to be provided to bound the analysis 
and achieve a result. These factors are lower and 
upper bounds on input data, static data from previous 
task activations, or data provided by devices outside 
of processor knowledge (DMA for example). For 
these, maximum loop iterations, values read from 
memory, branch exclusions, etc, have to be specified 
to aiT. 
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Figure3. Phases of WCET computation 

 

Cache Analysis uses the results of value analysis to 
predict the behaviour of the (data) cache. The results 
of cache analysis are used within pipeline analysis 
allowing the prediction of pipeline stalls due to cache 
misses. The combined results of the cache and 
pipeline analyses are used to compute the execution 
times of program paths. Separating the WCET 
determination into several phases makes it possible to 
use different methods tailored to the subtasks. Value 
analysis, cache analysis, and pipeline analysis are 
done by abstract interpretation [2], a semantics-based 
method for static program analysis. Integer linear 
programming is used for path analysis. 

4.2 Reconstruction of the Control Flow from 
Binary Programs 

The starting point of our analysis framework is a 
binary program and additional user-provided 
information about numbers of loop iterations, upper 
bounds for recursion, etc. In the first step a parser 
reads the compiler output and reconstructs the control 
flow. This requires some knowledge about the 
underlying hardware, e.g., which instructions 
represent branches or calls. The reconstructed control 
flow is annotated with the information needed by 
subsequent analyses and then translated into CRL 
(Control Flow Representation Language, a human-
readable intermediate format designed to simplify 
analyses and optimizations at the 
executable/assembly level). This annotated control 
flow graph serves as the input for micro architecture 
analyses.  
Logical Framework Analysis or the Logical 
Framework Approach (LFA) is an analytical process 
for structuring and systematizing the analysis of a 
project or programme idea. It is useful to distinguish 
between LFA, which is a process involving 
stakeholder analysis, problem analysis, objective 
setting and strategy selection – and the logical 
framework matrix, often called [7] the log frame, 
which documents the product of the LFA process. 
Intervention logic: the description of the project 
according to its hierarchy of objectives – the strategy 
underlying the project Vision: the desired state or 

ultimate condition that a project is working to 
achieve and to which the project contributes Goal: a 
desired impact of a project – ambitious yet realistic; 
direct benefits to the conservation target; the project 
is held responsible for achieving its stated goal(s) 
Objective: a desired accomplishment or outcome of a 
project, such as the reduction of a critical threat – the 
actual change in a problem targeted by the project 
Results: the tangible products or services delivered 
by the project Strategic activity: A specific action or 
set of tasks to reach one or more results (or 
objectives); activities can be added as a fifth row 
under results, but this is no longer current practice 
among most donors, and activities do not need 
indicators Indicator: a measurable entity related to a 
specific information need, such as the status of a 
target/factor, change in a threat, or progress toward 
an objective; a good indicator meets the criteria of 
being measurable, precise, consistent, and sensitive.  

4.3 Data flow analysis 
The aim of the data flow analysis phase is to 
transform the low-level intermediate representation 
into a higher-level representation that resembles a 
HLL statement. It is therefore necessary to eliminate 
the concept of condition codes (or flags) and 
registers, as these concepts do not exist in high-level 
languages, and to introduce the concept of 
expressions, as these can be used in any HLL 
program. For this purpose, the technology of 
compiler optimization has been appropriated. The 
first analysis is concerned with condition codes. 
Some condition codes are used only by hand-crafted 
assembly code instructions, and thus are not 
translatable to a high level representation. Therefore, 
condition codes are classified in two groups: HLCC 
which is the set of condition codes that are likely to 
have been generated by a compiler (e.g. overflow, 
carry), and NHLCC which is the set of condition 
codes that are likely to have been generated by 
assembly code (e.g. trap, interrupt). The control flow 
analyser structures the control flow graph into 
generic high-level control structures that are available 
in most languages. These are conditional (if then 
[.else]), multi way branch (case), and different types 
of loops (while (), repeat until, and endless loop). 
Different methods have been specified in the 
literature to structure graphs, most of them dealing 
with the elimination of go to statements from the 
graph, by the introduction of new variables16,17, 
code replication18,19,20 or the use of multilevel 
exit21,22. Both the introduction of new variables and 
code replication modify the apparent semantics of the 
program, and is therefore not desirable when 
decompiling binary programs, given that we want to 
decompile the code ‘as is’. The use of multilevel exit 
statements is not supported by commonly used 
languages (e.g. Pascal, C), and thus cannot be part of 
the generic set of high-level control constructs that 
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can be generated. We developed an algorithm that 
structures the graph into the set of generic high-level 
control structures, and, whenever it determines that a 
particular sub graph is not one of the generic 
constructs, it uses a go to. Note that the minimum 
number of go to is always used. 

4.4 Value Analysis 
On the hardware front, the rate of improvement in 
microprocessor CPU speed continues to exceed the 
rate of improvement in DRAM memory speed, 
producing an increasing gap between processor and 
memory performance [Patterson and et al. 1997]. 
Multiple levels of cache hierarchy have been 
introduced to alleviate the CPU-memory 
performance gap. However, it is also vital to optimize 
memory usage to achieve better performance. 
Furthermore, in recent years, power and energy 
consumption have become critical design issues for 
both high-end systems and embedded devices 
[8,9,10]. A significant source of processor energy 
consumption is on-chip cache [Kamble and Ghose 
1997; Mudge 2001], where memory loads and stores 
dissipate energy. Optimization of memory accesses 
thus can also improve application energy efficiency. 

4.5 Loop Bound Analysis 
Upper bounds on the number of loop iterations are 
needed in order to derive a finite WCET estimate at 
all. Similarly, recursion depth must also be bounded. 
Due to the halting problem, no automatic method for 
loop bounds analysis can give an exact answer for all 
loops. Thus, WCET analysis tools provide means to 
give loop iteration bounds manually [5, 6, 17]. 
However, this is often laborious, and a source of 
possible errors. Although necessarily incomplete, an 
automatic loop bounds analysis can still be useful to 
reduce the manual work by bounding most of the 
commonly occurring loops. A common approach is to 
identify loop counters, and then determine (or bound) 
their start values, increment (decrement), and highest 
(or lowest) possible value. From this information, an 
upper bound for the iteration count can be obtained. 
Whalley et al. [12] use data flow analysis and 
specialized algorithms to calculate loop bounds for 
both single and some special types of nested, 
triangular loops. This approach is quite syntactical 
and will fail for loops which do not fit the patterns. 
The loop-bound analysis of the Bound-T tool [17] 
estimates range and increment for loop counters 
using Presburger arithmetics, and the latest loop 
bound analysis of the aiT tool [4] decides start values 
by an interval-based AI and the possible increments 
by a data flow analysis. These methods have in 
common that they only work for well-structured 
loops with a proper nesting, and where loop counters 
are updated using addition or subtraction only. 
4.5 Cache Analysis 
The rate at which the processor can execute 
instructions is limited by the memory cycle time. 

This limitation has in fact been a significant problem 
because of the persistent mismatch between 
processor and main memory speeds. Caches—which 
are relatively small high speed memories—have been 
introduced in order to hold the contents of most 
recently used data of main memory and to exploit the 
phenomenon of locality of reference (see Hennessy 
and Patterson, 1990). The advantage of a cache is to 
improve the average access time for data located in 
main memory. 

4.6 Pipeline Analysis 
Pipeline analysis models the pipeline behaviour to 
determine execution times for sequential flows (basic 
blocks) of instructions, as done in [11]. It takes into 
account the current pipeline state(s), in particular 
resource occupancies, contents of prefetch queues, 
grouping of instructions, and classification of 
memory references by cache analysis. The result is an 
execution time for each basic block in each 
distinguished execution context. Like value and 
cache analysis, pipeline analysis is based on the 
framework of abstract interpretation. Pipeline 
analysis of a basic block starts with a set of pipeline 
states determined by the predecessors of the block 
and lets this set evolve from instruction to instruction 
by a kind of cycle-wise simulation of machine 
instructions. In contrast to a real simulation, the 
abstract execution on the instruction level is in 
general non-deterministic since information 
determining the evolution of the execution state is 
missing, e.g., due to non-predictable cache contents. 
  

5. PATH ANALYSIS 
A main issue in WCET analysis is to avoid 
pessimism while being safe in timing evaluation. 
Ideally, WCET estimation method should, given an 
input program, produce a tight estimate of the upper-
bound of the actual WCET. But first, we need a 
timing model of the hardware platform. Indeed, such 
micro-architecture modelling for low-level analysis is 
non-trivial and it is almost impossible to achieve 
exact WCET estimates in CPU cycles. Second, it is 
crucial to estimate accurately bounds for loops and 
eliminate infeasible paths from bound calculation, 
especially in the presence of nested loops. This can 
be partially addressed by requiring user-provided 
path annotations and loop bound information. Apart 
from considerable effort and error-proneness, 
sometimes the user may not actually know such 
information. A more attractive solution is to 
automatically detect infeasible paths and derive loop 
bounds through static path analysis methods [2, 12, 
16, 17]. 
 

6 PRECISION OF AIT 
Since the real WCET is not known for typical real-
life applications, statements about the precision of 
aiT are hard to obtain. For an automotive application 
running on MPC 555, one of AbsInt’s customers has 
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observed an overestimation of 5–10% when 
comparing aiT’s results and the highest execution 
times observed in a series of measurements (which 
may have missed the real WCET). For an avionics 
application running on MPC 755, Airbus has noted 
that aiT’s WCET for a task typically is about 25% 
higher than some measured execution times for the 
same task, the real but non-calculable WCET being 
in between. Measurements at AbsInt have indicated 
overestimations ranging from 0% (cycle-exact 
prediction) till 10% for a set of small programs 
running on M32C, TMS320C33, and C16x/ST10. 
Table 1 shows the results for C166. The analysis 
times were moderate—a few seconds till about 3 
minutes for edn. 
 

PRECISION OF AIT FOR SOME C166 PROGRAMS 

 
7. CONCLUSION 

In this paper, we presented an abstract interpretation 
based static analysis framework for analyzing hard-
codedness of pointer variables in embedded assembly 
code. Our results show that static analysis based 
approaches is viable in industrial settings for 
checking for coding standards compliance. Code 
compliance checking is critical for code reuse and 
COTS compatibility in applications. A complete 
analyzer has been developed for pointer hard-
codedness analysis and shown to run successfully on 
code samples taken from Texas Instruments’ DSP 
code suite. The prototype system is currently being 
refined to provide more accurate results in presence 
of global pointers and mutually recursive functions. 
Future work also includes extending the system to 
handle rules 1, 2, and 4 through 6 [11] laid out by TI. 
Note that the analyses needed for rule numbers 4 and 
6 are very similar to hard-codedness analysis. 
Similarly rules 2 and 5 require analysis that 
determines if a binary code is entrant. 
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