
Stagnant Memory and Timing investigation
of Embedded Systems Code

M.Shankar, Dr.M.Sridar2, Dr.M.Rajani3

1 Associate professor & Head for PG and UG studies,
Department of Electrical and Electronics Engineering, Kuppam Engineering College,

Kuppam, Andhra Pradesh, India,
2Director of International Relations, Bharath University, Chennai, Tamilnadu, India,

3Director- Research & development. Bharath University, Chennai, India

Abstract—Static program analysis by abstract
interpretation is an efficient method to determine
properties of embedded software. One example is value
analysis, which determines the values stored in the
processor registers. Therefore, utmost carefulness and
state-of-the-art machinery have to be applied to make
sure that an application meets all requirements. To do
so lays in the responsibility of the system designer(s). As
more software and embedded code saw use in safety-
critical and avionics applications, an industry standard
group developed the RTCA/DO-178B: Software
Considerations in Airborne Systems and Equipment
Certification.
Index Terms— Branch Prediction, Worst Case
Execution Time, Stack, WCET

1 INTRODUCTION

Software which is embedded in aircraft to which
people entrust their lives becomes safety critical and
consequently must be of the highest standards.
Failures of such software must be as rare as virtually
non-existing during the lifetime of all aircraft
concerned. Due to the high costs of aircraft,
hypothetical software failures would also incur major
financial losses, a further drive to require the highest
quality. It is clear that in aircraft, safety is not
compromise requirement one. The Army Strategic
Software Improvement Program (ASSIP1) has tasked
the Carnegie Mellon® Software Engineering Institute
(SEI) to conduct a study of real-time, safety-critical,
embedded (RTSCE) systems issues and develops
recommendations for effectively dealing with those
issues. This report contains the results of the first
phase, an investigation into the current body of
knowledge related to RTSCE system and software
development, to include practices employed and
emerging in the relevant United States and European
commercial and government sectors. In a second
phase, issues and shortfalls with the current state of
RTSCE software acquisition and development
practices will be identified. Recommendations for
correcting those problems in the weapon systems
domain will be made with emphasis on up-front tasks
and considerations that will allow acquirers to
position their acquisition programs properly from the
start.

2 VALUE ANALYSES
We additionally have to encrypt data values stored in
off-chip memory. The encryption and decryption of
data values can be done by hardware. However
several interesting decidable scenarios have been
identified. In this section, we will see that it follows
quite directly from Theorem 1 that the consistency
and the implication problem for unary keys and unary
inclusion constraints are decidable, even relative to
structural constraints given by a regular tree language
(a similar result was first shown in [1]. Other
scenarios and approaches will be discussed in the
next section. Because of the presence of loops,
transfer and combination functions must be applied
repeatedly until the system of abstract states
stabilizes. Termination of this fixed point iteration is
ensured on a theoretical level by the mono tonicity of
transfer and combination functions and the fact that a
memory location can only hold finitely many
different values. Value analysis is a static analysis
method based on abstract interpretation. It produces
results valid for every program run and all inputs to
the program. Therefore, it cannot always predict an
exact value for a memory location, but determines
abstract values instead that stand for sets of concrete
values. There are several variants of value analysis
depending on what kinds of abstract values are used.
In constant propagation, an abstract value is either a
single concrete value or the statement that no
information about the value is known. In interval
analysis, abstract values are intervals that are
guaranteed to contain the exact values. Further
extensions of value analysis record known equalities
between otherwise unknown values, or more
generally, upper and lower bounds for their
differences, or even more generally, arbitrary linear
constraints between values. As compiler writers are
well aware, constants provide excellent optimization
capability, through the well-known compiler
optimization known as constant propagation and
constant folding [1][10]. Such propagation consists
of replacing a variable holding a constant by the
constant itself. This replacement can result, for
example, in branch conditions that always evaluate to
false, resulting in turn in dead code that can then be

M.Shankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3093 - 3098

3093

eliminated. It can also enable compile-time
evaluation of expressions. Such dead code resulting
from constant propagation is especially common
when propagating constants into subroutines through
the subroutine’s parameters. While the subroutine
may have been designed to handle a variety of sets of
parameters, a particular program may only call the
subroutine with certain constant values for those
parameters, resulting in much dead code in the
subroutine.

3 STACK USAGE ANALYSES

A stack overflow in an embedded DSP application
generally produces a catastrophic software crash due
to data corruption, lost return addresses, or both. The
traditional approach to avoiding stack overflow is to
perform offline testing during software development.
Typically, a stack will be comfortably oversized, and
the entire stack memory filled with some known data
value using a code debugger. To implement this
strategy, the stack buffer is set up as a circular buffer
with a head and tail pointer. A pointer to memory is
also needed to keep track of the top element of the
memory-resident portion of the stack. Whenever a
stack overflow is encountered, the bottom-most
buffer-resident element is copied to memory, freeing
a buffer location. Whenever an underflow is
encountered, one element from memory is copied
into the buffer. This technique has the appeal that the
processor never moves a stack element to or from
memory unless absolutely necessary, guaranteeing
the minimum amount of stack traffic.
A possible embellishment of this scheme would be to
have the stack manager always keep a few elements
empty and at least several elements full on the stack.
This management could be done using otherwise
unused memory cycles, and would reduce the number
of overflow and underflow pauses. Unfortunately,
this embellishment is of little value on real stack
machines, since they all strive to use program
memory 100% of the time for fetching instructions
and data, leaving no memory bandwidth left over for
the stack manager to use.
Another drawback of the testing-based approach to
determining stack depth is that it treats the system as
a black box, providing developers with little or no
feedback about how to best optimize memory usage.
Static stack analysis, on the other hand, identifies the
critical path through the system and also the
maximum stack consumption of each function; this
usually exposes obvious candidates for optimization.
Using our method for statically bounding stack depth
as a starting point, we have developed a novel way to
automatically reduce the stack memory requirement
of an embedded system. The optimization proceeds
by evaluating the effect of a large number of potential
program transformations in a feedback loop, applying
only transformations that reduce the worst-case depth

of the stack. Static analysis makes this kind of
optimization feasible by rapidly providing accurate
information about a program. Testing based
approaches to learning about system behaviour, on
the other hand, are slower and typically only explore
a fraction of the possible state space. Static Analysis
based approaches consist in using tools to analyze the
application stack space consumption patterns and
possibly compute worst case bounds prior to
execution time. They usually perform some local
stack consumption analysis combined with control-
flow graph traversals. The bound computation is
actually a small subset of a wide category of resource
bounding analysis problems, focus of a lot of
research activity over the years. See for an example
set of publications in this area, or for a specific
instance. One limitation is that a compiler cannot
provide information on elements it doesn’t process,
such as COTS operating system services for which
sources are not available or very low level routines
developed in assembly language. When worst case
bounds are a strong concern, not having the sources
of some components is rare, however, and the stack
usage in assembly routines is usually simple enough
to be accounted for manually.
The compilation process may also not be able to
grasp the interrupt handling bits necessary to size the
worst case amount of interrupt related stack, be it for
hardware interrupt or signal handlers. Interrupt
handling always requires very careful design [2,3]
and coding, though, so the information could at least
also be provided to the framework by the user, or
accounted for separately. When faced with an
instruction I that is an indirect memory reference off
one or more registers, we attempt to discover whether
or not the register(s) used by I could be pointing into
the stack.
We do this by tracing back from I in an attempt to
determine the origin of the initial value of the
registers in question. If we can determine that the
base address being used for the pointer arithmetic is
in global memory or the heap, then, from the
reasoning above, we can conclude that the indirect
memory reference cannot affect the stack.

Fig1. Call graph with stack usage analysis results. All

routines are annotated by their worst-case stack
usage.

M.Shankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3093 - 3098

3094

Fig2. In the control flow graph, all basic blocks and
instructions are annotated by their worst-case stack

usage

Stack Analyzer provides automatic tool support to
calculate precise information on the stack usage. This
not only reduces development effort, but also helps to
prevent runtime errors due to stack overflow. Critical
program sections are easily recognized thanks to
color coding. The analysis results thus provide
valuable feedback in optimizing the stack usage of an
application. The predicted worst-case stack usages of
individual tasks in a system can be used in an
automated overall stack usage analysis for all tasks
running on one Electronic Control Unit, as described
in [7] for systems managed by an OSEK/VDX real-
time operating system.

4 WCET ANALYSES: WORST-CASE EXECUTION

TIME PREDICTION.
Abstract interpretation can be used to efficiently
compute a safe approximation for all possible cache
and pipeline states that can occur at a program point.
These results can be combined with ILP (Integer
Linear Programming) techniques to safely predict the
worst-case execution time and a corresponding
worst-case execution path. This approach can help to
overcome the challenges listed in the previous
sections. Abs Int’s WCET tool aiT determines the
WCET of a program task in several phases [4] (see
Figure 1): •CFG Building decodes, i.e. identifies
instructions, and reconstructs the control-flow graph
(CFG) from a binary program.
•Value Analysis computes value ranges for registers
and address ranges for instructions accessing
memory.
•Loop Bound Analysis determines upper bounds for
the number of iterations of simple loops.
•Cache Analysis classifies memory references as
cache misses or hits.
•Pipeline Analysis predicts the behaviour of the
program on the processor pipeline.

Hard real-time systems need methods to determine
upper bounds for their execution times, usually called
worst-case execution times, (WCET). Based on these
bounds, a schedulability analysis can check whether
the underlying hardware is fast enough to execute the
system’s task such that they all finish before their
deadlines. This problem is nontrivial because
performance-enhancing architectural features such as
caches, pipelines, and branch prediction introduce
“local non-determinism” into the processor
behaviour; local inspection of the program cannot
determine what the contribution of an instruction to
the program’s overall execution time is. The
execution history determines whether the
instruction’s memory accesses hit or miss the cache,
whether the pipeline units needed by the instruction
are occupied or not, and whether branch prediction is
correct or not.

4.1 Structure of WCET Computation
We first present some more details about the structure
of the program. It consists of 24 uninterruptible tasks
that are activated one-by-one by a real time clock in a
fixed schedule: task 1 to task 24, then task 1 again,
and so on until the electrical power of the aircraft is
switched off. This time-triggered scheduling method
requires that the WCET of each task must be less
than the period of the real-time clock. The call graph
of each task is basically organized in three layers.
The first layer contains 4 calls to so-called
sequencers, which for each task are selected from a
list of 38 possibilities. These sequencers allow for the
activation of pieces of code at different rates, i.e., 1
over 2 ticks, 4 ticks, 8 ticks or 24 ticks. Still in this
highest layer, some system routines are called before
and after the four sequencer calls. The second layer
consists of the routines containing the actual
operation code composed of “calls” to code macros,
which form the basic components referred to in
section 3. The third layer consists of the input/output
routines called by some of the basic components
present in the second layer. The major part of the
factors affecting the WCET (conditions, loop bounds,
pointers, etc) is found automatically by aiT, either by
code inspection or from the annotations describing
the configuration table. Yet some factors are outside
aiT’s knowledge and capacities [4,5,6], and
annotations have to be provided to bound the analysis
and achieve a result. These factors are lower and
upper bounds on input data, static data from previous
task activations, or data provided by devices outside
of processor knowledge (DMA for example). For
these, maximum loop iterations, values read from
memory, branch exclusions, etc, have to be specified
to aiT.

M.Shankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3093 - 3098

3095

Figure3. Phases of WCET computation

Cache Analysis uses the results of value analysis to
predict the behaviour of the (data) cache. The results
of cache analysis are used within pipeline analysis
allowing the prediction of pipeline stalls due to cache
misses. The combined results of the cache and
pipeline analyses are used to compute the execution
times of program paths. Separating the WCET
determination into several phases makes it possible to
use different methods tailored to the subtasks. Value
analysis, cache analysis, and pipeline analysis are
done by abstract interpretation [2], a semantics-based
method for static program analysis. Integer linear
programming is used for path analysis.

4.2 Reconstruction of the Control Flow from
Binary Programs

The starting point of our analysis framework is a
binary program and additional user-provided
information about numbers of loop iterations, upper
bounds for recursion, etc. In the first step a parser
reads the compiler output and reconstructs the control
flow. This requires some knowledge about the
underlying hardware, e.g., which instructions
represent branches or calls. The reconstructed control
flow is annotated with the information needed by
subsequent analyses and then translated into CRL
(Control Flow Representation Language, a human-
readable intermediate format designed to simplify
analyses and optimizations at the
executable/assembly level). This annotated control
flow graph serves as the input for micro architecture
analyses.
Logical Framework Analysis or the Logical
Framework Approach (LFA) is an analytical process
for structuring and systematizing the analysis of a
project or programme idea. It is useful to distinguish
between LFA, which is a process involving
stakeholder analysis, problem analysis, objective
setting and strategy selection – and the logical
framework matrix, often called [7] the log frame,
which documents the product of the LFA process.
Intervention logic: the description of the project
according to its hierarchy of objectives – the strategy
underlying the project Vision: the desired state or

ultimate condition that a project is working to
achieve and to which the project contributes Goal: a
desired impact of a project – ambitious yet realistic;
direct benefits to the conservation target; the project
is held responsible for achieving its stated goal(s)
Objective: a desired accomplishment or outcome of a
project, such as the reduction of a critical threat – the
actual change in a problem targeted by the project
Results: the tangible products or services delivered
by the project Strategic activity: A specific action or
set of tasks to reach one or more results (or
objectives); activities can be added as a fifth row
under results, but this is no longer current practice
among most donors, and activities do not need
indicators Indicator: a measurable entity related to a
specific information need, such as the status of a
target/factor, change in a threat, or progress toward
an objective; a good indicator meets the criteria of
being measurable, precise, consistent, and sensitive.

4.3 Data flow analysis
The aim of the data flow analysis phase is to
transform the low-level intermediate representation
into a higher-level representation that resembles a
HLL statement. It is therefore necessary to eliminate
the concept of condition codes (or flags) and
registers, as these concepts do not exist in high-level
languages, and to introduce the concept of
expressions, as these can be used in any HLL
program. For this purpose, the technology of
compiler optimization has been appropriated. The
first analysis is concerned with condition codes.
Some condition codes are used only by hand-crafted
assembly code instructions, and thus are not
translatable to a high level representation. Therefore,
condition codes are classified in two groups: HLCC
which is the set of condition codes that are likely to
have been generated by a compiler (e.g. overflow,
carry), and NHLCC which is the set of condition
codes that are likely to have been generated by
assembly code (e.g. trap, interrupt). The control flow
analyser structures the control flow graph into
generic high-level control structures that are available
in most languages. These are conditional (if then
[.else]), multi way branch (case), and different types
of loops (while (), repeat until, and endless loop).
Different methods have been specified in the
literature to structure graphs, most of them dealing
with the elimination of go to statements from the
graph, by the introduction of new variables16,17,
code replication18,19,20 or the use of multilevel
exit21,22. Both the introduction of new variables and
code replication modify the apparent semantics of the
program, and is therefore not desirable when
decompiling binary programs, given that we want to
decompile the code ‘as is’. The use of multilevel exit
statements is not supported by commonly used
languages (e.g. Pascal, C), and thus cannot be part of
the generic set of high-level control constructs that

M.Shankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3093 - 3098

3096

can be generated. We developed an algorithm that
structures the graph into the set of generic high-level
control structures, and, whenever it determines that a
particular sub graph is not one of the generic
constructs, it uses a go to. Note that the minimum
number of go to is always used.

4.4 Value Analysis
On the hardware front, the rate of improvement in
microprocessor CPU speed continues to exceed the
rate of improvement in DRAM memory speed,
producing an increasing gap between processor and
memory performance [Patterson and et al. 1997].
Multiple levels of cache hierarchy have been
introduced to alleviate the CPU-memory
performance gap. However, it is also vital to optimize
memory usage to achieve better performance.
Furthermore, in recent years, power and energy
consumption have become critical design issues for
both high-end systems and embedded devices
[8,9,10]. A significant source of processor energy
consumption is on-chip cache [Kamble and Ghose
1997; Mudge 2001], where memory loads and stores
dissipate energy. Optimization of memory accesses
thus can also improve application energy efficiency.

4.5 Loop Bound Analysis
Upper bounds on the number of loop iterations are
needed in order to derive a finite WCET estimate at
all. Similarly, recursion depth must also be bounded.
Due to the halting problem, no automatic method for
loop bounds analysis can give an exact answer for all
loops. Thus, WCET analysis tools provide means to
give loop iteration bounds manually [5, 6, 17].
However, this is often laborious, and a source of
possible errors. Although necessarily incomplete, an
automatic loop bounds analysis can still be useful to
reduce the manual work by bounding most of the
commonly occurring loops. A common approach is to
identify loop counters, and then determine (or bound)
their start values, increment (decrement), and highest
(or lowest) possible value. From this information, an
upper bound for the iteration count can be obtained.
Whalley et al. [12] use data flow analysis and
specialized algorithms to calculate loop bounds for
both single and some special types of nested,
triangular loops. This approach is quite syntactical
and will fail for loops which do not fit the patterns.
The loop-bound analysis of the Bound-T tool [17]
estimates range and increment for loop counters
using Presburger arithmetics, and the latest loop
bound analysis of the aiT tool [4] decides start values
by an interval-based AI and the possible increments
by a data flow analysis. These methods have in
common that they only work for well-structured
loops with a proper nesting, and where loop counters
are updated using addition or subtraction only.
4.5 Cache Analysis
The rate at which the processor can execute
instructions is limited by the memory cycle time.

This limitation has in fact been a significant problem
because of the persistent mismatch between
processor and main memory speeds. Caches—which
are relatively small high speed memories—have been
introduced in order to hold the contents of most
recently used data of main memory and to exploit the
phenomenon of locality of reference (see Hennessy
and Patterson, 1990). The advantage of a cache is to
improve the average access time for data located in
main memory.

4.6 Pipeline Analysis
Pipeline analysis models the pipeline behaviour to
determine execution times for sequential flows (basic
blocks) of instructions, as done in [11]. It takes into
account the current pipeline state(s), in particular
resource occupancies, contents of prefetch queues,
grouping of instructions, and classification of
memory references by cache analysis. The result is an
execution time for each basic block in each
distinguished execution context. Like value and
cache analysis, pipeline analysis is based on the
framework of abstract interpretation. Pipeline
analysis of a basic block starts with a set of pipeline
states determined by the predecessors of the block
and lets this set evolve from instruction to instruction
by a kind of cycle-wise simulation of machine
instructions. In contrast to a real simulation, the
abstract execution on the instruction level is in
general non-deterministic since information
determining the evolution of the execution state is
missing, e.g., due to non-predictable cache contents.

5. PATH ANALYSIS
A main issue in WCET analysis is to avoid
pessimism while being safe in timing evaluation.
Ideally, WCET estimation method should, given an
input program, produce a tight estimate of the upper-
bound of the actual WCET. But first, we need a
timing model of the hardware platform. Indeed, such
micro-architecture modelling for low-level analysis is
non-trivial and it is almost impossible to achieve
exact WCET estimates in CPU cycles. Second, it is
crucial to estimate accurately bounds for loops and
eliminate infeasible paths from bound calculation,
especially in the presence of nested loops. This can
be partially addressed by requiring user-provided
path annotations and loop bound information. Apart
from considerable effort and error-proneness,
sometimes the user may not actually know such
information. A more attractive solution is to
automatically detect infeasible paths and derive loop
bounds through static path analysis methods [2, 12,
16, 17].

6 PRECISION OF AIT
Since the real WCET is not known for typical real-
life applications, statements about the precision of
aiT are hard to obtain. For an automotive application
running on MPC 555, one of AbsInt’s customers has

M.Shankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3093 - 3098

3097

observed an overestimation of 5–10% when
comparing aiT’s results and the highest execution
times observed in a series of measurements (which
may have missed the real WCET). For an avionics
application running on MPC 755, Airbus has noted
that aiT’s WCET for a task typically is about 25%
higher than some measured execution times for the
same task, the real but non-calculable WCET being
in between. Measurements at AbsInt have indicated
overestimations ranging from 0% (cycle-exact
prediction) till 10% for a set of small programs
running on M32C, TMS320C33, and C16x/ST10.
Table 1 shows the results for C166. The analysis
times were moderate—a few seconds till about 3
minutes for edn.

PRECISION OF AIT FOR SOME C166 PROGRAMS

7. CONCLUSION

In this paper, we presented an abstract interpretation
based static analysis framework for analyzing hard-
codedness of pointer variables in embedded assembly
code. Our results show that static analysis based
approaches is viable in industrial settings for
checking for coding standards compliance. Code
compliance checking is critical for code reuse and
COTS compatibility in applications. A complete
analyzer has been developed for pointer hard-
codedness analysis and shown to run successfully on
code samples taken from Texas Instruments’ DSP
code suite. The prototype system is currently being
refined to provide more accurate results in presence
of global pointers and mutually recursive functions.
Future work also includes extending the system to
handle rules 1, 2, and 4 through 6 [11] laid out by TI.
Note that the analyses needed for rule numbers 4 and
6 are very similar to hard-codedness analysis.
Similarly rules 2 and 5 require analysis that
determines if a binary code is entrant.

References
[1] Samuel Z. Guyer, Calvin Lin. Client-Driven Pointer Analysis.

Static Analysis Symposium. 2003. Springer LNCS 2694. pp.
214-236.

[2] S. Adams, T. Ball, et al. Speeding Up Dataflow Analysis Using
Flow-Insensitive Pointer Analysis. SAS 2002. pp. 230-246

[3] Donglin Liang, Mary Jean Harrold. Efficient Computation of
Parameterized Pointer Information for Interprocedural
Analyses. SAS 2001. Springer LNCS 2126. pp. 279-29.

[4] D. Brylow, N. Damgaard, J. Palsberg, Static Checking of
Interrupt-driven Software. International Conference on
Software Engineering. 2001.

[5] W. Amme, P. Braun, E. Zehendner, F. Thomasset. Data
Dependence Analysis of Assembly Code. Proc. PACT 1998.

[6] M. Fernandez and R. Espasa. Speculative alias analysis for
executable code. Proc. PACT 2002.

[7] J. Bergeron, M. Debbabi, M.M. Erhioui, B. Ktari. Static
Analysis of Binary Code to Isolate Malicious Behaviors.
IEEE 8th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 1999. Palo Alto,
California

[8] Saumya Debray, Robert Muth, Matthew Weippert Alias
analysis of executable code. POPL’98.

[9] Thomas Lundquist and Per Stenstr¨om. Timing anomalies in
dynamically scheduled microprocessors. In Proceedings of
the 20th IEEE Real-Time Systems Symposium, December
1999.

[10] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian
Ferdinand. Analysis of Loops. In Kai Koskimies, editor,
Proceedings of the International Conference on Compiler
Construction (CC’98), volume 1383 of Lecture Notes in
Computer Science, pages 80–94. Springer-Verlag, March
/April 1998.

[11] J¨orn Schneider and Christian Ferdinand. Pipeline Behavior
Prediction for Superscalar Processors by Abstract
Interpretation. In Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embedded
Systems, volume 34, pages 35–44, May 1999.

[12] John A. Stankovic. Real-Time and Embedded Systems. ACM
50th Anniversary Report on Real-Time Computing Research,
1996. http://www-ccs.cs.umass.edu/sdcr/rt.ps.

[13] Henrik Theiling. Extracting Safe and Precise Control Flow
from Binaries. In Proceedings of the 7th Conference on Real-
Time Computing Systems and Applications, Cheju Island,
South Korea, 2000.

[14] Henrik Theiling. Generating Decision Trees for Decoding
Binaries. In Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers and Tools for Embedded Systems,
pages 112–120, Snowbird, Utah, USA, June 2001.

[15] Henrik Theiling. ILP-based interprocedural path analysis. In
Alberto L. Sangiovanni-Vincentelli and Joseph Sifakis,
editors, Proceedings of EMSOFT 2002, Second International
Conference on Embedded Software, volume 2491 of Lecture
Notes in Computer Science, pages 349–363. Springer-Verlag,
2002.

M.Shankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3093 - 3098

3098

